
Dynamical Numerics for Numerical Dynamics
Robert H. C. Moir

Contents

1 Introduction 1

2 Dynamical Systems 2

3 Numerical Methods 3

4 Numerical Methods as Dynamical Systems 6

5 Global Stability Properties 8
5.1 Linear Decay Systems . 9
5.2 Dissipative Systems . 12

6 Discretization of Arbitrary Attractors 18

7 Conclusion 19

A Numerical Methods (in alphabetical order) 20
A.1 beuler . 20
A.2 euler . 23
A.3 rk4 . 24
A.4 theta1 . 26
A.5 theta2 . 29

1 Introduction

A wide variety of physical and social systems are modeled as continuous-time dynamical systems.
And since most phenomena are nonlinear the models obtained for such systems are difficult to an-
alyze analytically. This makes the use of numerical methods and computation an essential tool for
the analysis of dynamical system models. Since numerical methods involve the approximation of
continuously evolving systems by a discrete algorithm amenable to computer processing, there arises
the crucially important problem of determining whether the discretization of the model faithfully
represents the actual behaviour of solutions to the model. In order to address this question one
requires a formal approach that enables the proof of powerful results about the ability of numerics
to reproduce the behaviour of the model. One fruitful approach is to treat the numerics themselves
as discrete dynamical systems so that the theory of dynamical systems can be brought to bear on
the problem. This paper is concerned with an exploration of the basics of this approach.

There are two general kinds of results that are proved concerning the ability of numerics to faithfully
reproduce features of the model. One kind of question concerns the closeness of phase trajectories of
the numerical simulation to the actual trajectories of the dynamical system. This becomes analyzed
as a convergence question. The results addressing this question concern when and whether solutions
generated by numerics converge to the true solution in the limit as the time-step of the numerical
method goes to zero, and what is the rate of the convergence. Convergence results can be proved for
finite-time evolution, where one is concerned with the global error, i.e. the overall distance between
the computed trajectory and the actual trajectory, going to zero as the time-step ∆t goes to zero.
Convergence results can also be proved for infinite-time evolution, where one is concerned with
whether trajectories of the numerical solution converge on ω-limit sets of the dynamical system in
the limit where ∆t → 0. This is one area where the dynamical systems approach to numerics is
useful. The focus of this paper, however, is on the second general kind of question.

The other kind of question concerns whether the invariant sets of the numerical method, e.g.

equilibria, steady state solutions, attractors, etc., actually correspond to the invariant sets of the
dynamical system. The kind of results that can be proved are results concerning the structure
preserving properties of particular classes of numerical methods under certain conditions, and the
structure preserving properties of general numerical methods under mild or no restrictions on the
time-step. It is very difficult to prove results on very weak assumptions, so assumptions are usu-
ally made about the properties of the numerical method or the structure of the vector field of the
dynamical system or both. The dynamical systems approach to numerics is also useful for proving
stability results. This paper is primarily an examination of the basics of this kind of numerical
analysis.

The breakdown of the sections of the paper are as follows. Section 2 just reviews some basic
definitions from the theory of dynamical systems and establishes notation. Section 3 discusses the
particular numerical methods considered in this paper, viz. the forward and backward Euler meth-
ods, the one- and two-stage theta methods and the classic RK4 method, as well as theMatlab code
for these methods written for use with this paper. Section 4 is concerned with a brief consideration
of the issue of establishing conditions under which a numerical method defines a dynamical system.
Section 5, the main section of the paper, considers some global stability properties. The first part

1

is a detailed examination and proof of results concerning the linear decay test problem. This is to
motivate and establish a basis for stability concepts for Runge-Kutta methods. The second part is
a consideration of the preservation of the dissipative structure of a dynamical system. The results
of theorems for the numerical methods discussed in section 3 are explored and the consequences
of the theorems explored with simulations. The final section is a brief consideration of the deep
and difficult question of when and whether attractors of dynamical systems are preserved under
discretization. The limited conclusion of the paper is that simulations may provide a useful guide
for the discovery of new theorems in numerical analysis.

2 Dynamical Systems

There are a number of concepts from the theory of dynamical systems that will be required for what
follows. Many of the concepts from dynamical systems theory are assumed, but ones that require
careful or clear definition will be provided in this section. The most basic distinction is between
what I am calling discrete and continuous dynamical systems. A discrete dynamical system on a
subset E ⊆ Rp is constituted by a map

Un+1 = f(Un),

where f is a function from R
p to R

p, for which there exists a unique solution sequence {Un}
∞

n=0 for
all U ∈ E that remains in E for all n ≥ 0. This definition can be generalized to include non-unique
solution sequences. Such a system is called a generalized discrete dynamical system. Each dynamical
system generates an operator Sn: E → E defined by Un = SnU0 called the evolution semigroup of
the system. The collection of semigroups Sn for all n ≥ 0 form a commutative monoid with identity
S0. The action of a semigroup Sn on a set of initial data B is defined by

SnB =
⋃

U∈B

SnU.

For a generalized discrete dynamical system the generalized evolution semigroup T n can also be
defined.

A continuous dynamical system on a subset E ⊆ Rp is constituted by a system of ordinary dif-
ferential equations

u̇ = f(u), (2.1)

where f(u) is a function from R
p to R

p, such that for all U ∈ E there exists a unique solution that
is defined for all t ∈ [0,∞) and remains inside E for all t ∈ [0,∞). f is written as an autonomous
function of u for simplicity, but there is no loss of generality here since a non-autonomous system
may always be converted into an autonomous one. Each continuous dynamical system generates
an evolution semigroup S(t): E → E defined by u(t) = S(t)u(0) for all t ≥ 0. The collection of
semigroups S(t) for all t ≥ 0 forms a commutative monoid with identity S(0).

A possible ambiguity with the distinction between discrete and continuous dynamical systems arises
because some authors reserve the term ‘continuous dynamical system’ for a dynamical system for
which the evolution semigroup is a continuous function of the initial data. I will use the term

2

well-posed to describe the case where the evolution semigroup is continuous, for both discrete and
continuous dynamical systems.

An invariant set for a dynamical system is a set that is invariant under the action of the evo-
lution semigroup Sn for all n ≥ 0, or S(t) for all t ≥ 0, as the case may be. A set A attracts a set B
under S(t) (resp., Sn) if for any ε > 0 there exists a t∗ = t∗(ε, B,A) (resp., n∗ = n∗(ε, B,A)) such
that S(t) ⊂ N (A, ε) (resp., Sn ⊂ N (A, ε)) for all t ≥ t∗ (resp. n ≥ n∗).1 A compact invariant set
is an attractor if it attracts an open neighbourhood of itself. A global attractor is an attractor that
attracts every bounded set in Rp.

A compact set Λ is uniformly stable if for every ε > 0 there exists a δ = δ(ε) > 0 such that if
dist(U,A) < δ then dist(S(t)U,Λ) < ε for all t ≥ 0.2 A compact set is uniformly asymptotically

stable if it is both asymptotically stable and uniformly stable. Similar definitions apply for discrete
dynamical systems. An important result that applies in both the discrete and continuous cases
is that an attractor is uniformly asymptotically stable and if Λ is uniformly asymptotically stable
then A = ω(Λ) ⊆ Λ is an attractor.

We will be interested in treating the discretization of (2.1) by a fixed time-step numerical method
as a discrete dynamical system. In such a case an evolution semigroup of the numerical method is
written as Sn

∆t, where ∆t is the time-step. Attracting sets are similarly indexed.

We now move on to a consideration of the fixed time-step Runge-Kutta methods considered in
this paper and the Matlab code written for them.

3 Numerical Methods

For simplicity, the numerical methods used in this paper are all fixed time-step Runge-Kutta meth-
ods. The Matlab file ode23tx, a textbook version of Matlab built-in ode23 solver available from
the Mathworks website for Cleve Moler’s book Numerical Computing with MATLAB, was used as
a code base for the numerical methods. All of the methods may be called without output arguments
and plot an emerging solution using odeplot or with arguments [t, y], which returns a vector t
of times and an array y where y(:,k) is the solution at t(k). The code for each of the methods
written for this paper are available in appendix A.

Two of the methods are explicit Runge-Kutta methods. The first, and simplest, is euler, which
uses the forward Euler method. Calls to euler are of the form

euler(F, tspan, y0, h)

The arguments of this method are common to all of the numerical methods written for this paper:
F is a function handle or anonymous function defining the right hand side f(t,y) of a system of
differential equations

ẏ = f(t,y);

1N (A, ε) denotes an ε-neighourhood of the set A.
2The distance from an element a to a set B is defined as dist(a,B) = infb∈B ‖a− b‖.

3

http://www.mathworks.com/moler/chapters.html

tspan is a vector [t0 tf], where t0 is the start time of the integration and tf is the final time of
the integration and tf can be less that t0, so the integration can process backward in time; y0 is
a vector of initial values; and h is the length of the time-step to be used in the integration.

The second explicit Runge-Kutta method is rk4, which uses the classic fourth-order Runge-Kutta
method with Butcher tableau

0 0 0 0 0
1

2

1

2
0 0 0

1

2
0 1

2
0 0

1 0 0 1 0
1

6

1

3

1

3

1

6

Calls to rk4 have the form rk4(F, tspan, y0, h). The arguments are the same as for euler above.

The rest of the methods used are implicit Runge-Kutta methods. The simplest is beuler, which
uses the backward Euler method. Calls to beuler have the form

beuler(F, DF, tspan, y0, h, tol, Nmax)

The inputs F, tspan, y0 and h have the same function as the previous methods. DF is the Jacobian
of F, which is used to solve the, in general, nonlinear implicit equation at each step. The nonlinear
equation is solved at each step using Newton’s method. For the backward Euler method, the implicit
equation that must be solved is

Un+1 = Un +∆t f(Un+1).

The approach is to use Netwon’s method to find the zero of the function

F(x) = (Un − x) + ∆t f(x). (3.1)

The Jacobian of this function is

DF(x) = −I +∆tDf(x).

Expanding F(x) about its zero x∗ to first order we obtain

F(x) = DF(x)(x− x∗).

So by letting x = xn and x∗ = xn+1 we obtain

DF(xn)(xn − xn+1) = F(xn). (3.2)

and inverting the system we obtain

xn+1 = xn − (DF(xn))
−1F(xn). (3.3)

This is the recurrence used to find the root of (3.1). beuler uses a different method depending
on whether the system of equations is a scalar or a vector system. The one dimensional case runs
Newton’s method using ordinary arithmetic. For the vector case, where matrix operations must
be used, the inverse of the Jacobian DF is not computed at each step of the iteration, rather

4

the Matlab backslash operator is used to solve the system 3.2. tol is the target tolerance of the
Newton iteration and Nmax is an adjustable maximum number of iterations for the Newton iteration.

The remaining methods are theta methods, the code for which is based on that of beuler. First
we have theta1, which uses the one-stage theta method, a general one-stage Runge-Kutta method.
The Butcher tableau for this method is

θ θ
1

with θ ∈ [0, 1]. So the implicit equation that must be solved at each step is

Un+1 = Un +∆t f ((1− θ)Un + θUn+1) . (3.4)

The approach used is to find the zero of the function

F(x) = (Un − x) + ∆t f ((1− θ)Un + θx) ,

which has Jacobian
DF(x) = −I + θ∆tDf ((1− θ)Un + θx) ,

using Newton’s method. Calls to theta1 have the form

theta1(F, DF, tspan, y0, h, theta, tol, Nmax)

The inputs are identical to those of beuler except for theta, which is the value of θ for the method.
For θ = 0 the method becomes identical for forward Euler and for θ = 1 the method becomes iden-
tical to backward Euler. For θ = 0.5 the method becomes the implicit midpoint rule. This is the
main use of theta1 and the one-stage theta method in this paper.

The final method is theta2, which uses the two-stage theta method. The Butcher tableau for
this method is

0
1 1− θ θ

1− θ θ

with θ ∈ [0, 1]. So the implicit equation that must be solved at each step is

Un+1 = Un +∆t [(1− θ)f(Un) + θf(Un+1)] . (3.5)

The approach used is to find the zero of the function

F(x) = (Un − x) + ∆t [(1− θ)f(Un) + θf(x)] ,

which has Jacobian
DF(x) = −I + θ∆tDf (x) ,

using Newton’s method. Calls to theta2 have the form

theta2(F, DF, tspan, y0, h, theta, tol, Nmax)

The inputs are identical to those of theta1. Just like theta1, for θ = 0 the method becomes
identical for forward Euler and for θ = 1 the method becomes identical to backward Euler. For
θ = 0.5 the method becomes the trapezoidal rule. This is the main use of theta2 and the two-stage
theta method in this paper.

5

4 Numerical Methods as Dynamical Systems

The focus of this paper is on the sort of results that are available concerning the stability of nu-
merical methods that can be treated as dynamical systems. Hence, it is an important question to
determine the conditions under which the discretization of a system of differential equations used
by a numerical method defines a discrete dynamical system. This section is devoted to a brief
consideration of results in this direction.

Many existence and uniqueness results for systems of differential equations, including (2.1), rely
on the function f satisfying some kind of Lipschitz condition. Lipschitz conditions can also be used
to determine conditions such that under discretization, the semigroup S(t) defined by (2.1) defines
a semigroup Sn

∆t for the numerical method dependent on the choice of time-step ∆t. Due to the
importance of well-posedness for physical applications we are interested in conditions under which
the semigroup Sn

∆t is continuous, or well-posed, when S(t) is. This section is just a few basic results
along these lines.

A general s-stage fixed time-step Runge-Kutta method for the solution of (2.1) has the form:

Yi = Un +∆t

s
∑

j=1

aijf(Yj), i = 1, . . . , s, (4.1)

Un+1 = Un +∆t
s

∑

i=1

bif(Yi), U0 = U, (4.2)

where Un is the approximation of u(tn) with tn = n∆t, ∆t is the fixed step-size and the Yi are the
stage values. The bi are called the weights of the method and for consistent methods satisfy the
condition

∑s
i=1

bi = 1. The bi determine a vector b and the values aij determine a matrix A. If the
entries of A satisfy the condition

aij = 0 ∀1 ≤ i ≤ j ≤ s,

then the Runge-Kutta method is explicit and time-steps are directly calculable. Otherwise the
method is implicit and an indirect method of calculation of the state values must be used.

The theorems cited in this section are from Stuart & Humphries (1996) and proofs are available
there. For explicit Runge-Kutta methods the following result is available:

Theorem 4.1 (Explicit Runge-Kutta Methods as Dynamical Methods: Locally Lipschitz Problems) Let
f be locally Lipschitz. Then, if the Runge-Kutta system (4.1), (4.2) is explicit, it generates a
well-posed dynamical system.

Thus, under conditions such that local solutions exist for (2.1) and are unique, the discretization
using an explicit Runge-Kutta method generates a well-posed dynamical system. This is interesting
since for f = u2, which is locally Lipschitz, the system (2.1) does not define a dynamical system
since solutions blow-up, even though its discretization with an explicit Runge-Kutta method does.

6

This is because iterations of a continuous map cannot blow-up in a finite number of iterations.
Taking the scalar case and the Euler method as an example, the solution of (2.1) for this f is

u(t) =
1

1/u0 − t
,

which blows-up in finite time, but the discretization Un+1 = Un +∆tU2
n does not since it can only

increase a finite amount at each step.

So, explicit methods are always solvable but for implicit methods we must worry about whether
the method is solvable. We have the following result:

Theorem 4.2 (Solvability of Runge-Kutta Equations: Globally Lipschitz Problems) If f is globally Lip-
schitz with Lipschitz constant L and

∆t <
1

L‖A‖∞
,

where ‖A‖∞ is the induced ∞-norm of A, then the equations (4.1) are uniquely solvable.

Stuart & Humphries (1996) also provide a fixed point method to find the stage values. This
result yields the following

Corollary 4.3 (Runge-Kutta Methods as Dynamical Systems: Globally Lipschitz Problems) If f is glob-
ally Lipschitz with Lipschitz constant L and if

∆t <
1

L‖A‖∞
,

then equations (4.1), (4.2) define a well-posed dynamical system.

If f is globally Lipschitz then (2.1) defines a well-posed dynamical system and this result shows
that the discretization by an implicit Runge-Kutta method does also.

Although this last result has a nice strong conclusion, the assumption of a globally Lipschitz f
is too strong for the majority of cases—nonlinear problems will generally not be globally Lipschitz.
So the ideal kind of result that we desire is that the discretization defines a well-posed dynamical
system whenever (2.1) does. We may obtain something along these lines. For systems of ODE,
provided that f is locally Lipschitz and there is an a priori condition on f that ensures boundedness
of solutions, then (2.1) defines a well-posed dynamical system. The following result establishes a
similar result for Runge-Kutta methods.

Theorem 4.4 (Runge-Kutta Methods on Locally Lipschitz Problems) Let f be locally Lipschitz and
assume that there is an a priori bound that implies that for some bounded set B, if Un ∈ B then
any solution of (4.1), (4.2) satisfies Un+1 ∈ B. Then it follows that there exists ∆tc = ∆tc(B) > 0
such that for ∆t ∈ (0,∆tc) the Runge-Kutta method (4.1), (4.2) defines a well-posed dynamical
system on B.

7

Again, Stuart & Humphries (1996) also provide a fixed point method to find the stage values.

Stuart & Humphries (1996) also provide a number of results that give conditions under which
Runge-Kutta methods define dynamical systems or generalized dynamical systems when the vector
field f satisfies some kind of structural property, including the structural properties to be considered
in the next section, viz. linear decay and dissipative systems. We are not concerned with detailing
these results here and as required we will assume the the solvability conditions are met.

5 Global Stability Properties

In this section we consider the stability properties of Runge-Kutta methods applied to problems
where the vector field f in (2.1) has a certain kind of global structural property that ensures that
solutions do not diverge to infinity as t → ∞. This is an important class to consider since such sys-
tems arise commonly in practice. The question we are interested in here is whether the ω-limit sets
ω(U) of the dynamical system S(t) agree with the ω-limit sets ω∆t(U) of the discretized dynamical
system Sn

∆t.

As an example of the sort of thing that can go wrong consider a simple problem, the simple
harmonic oscillator:

u̇ = Au, u(0) = (U, V)T A =

(

0 1
−1 0

)

.

The equilibrium point at the origin is a centre, so the invariant sets of the semigroup S(t) are
circles centred at the origin. Thus, if we are using a numerical method to compute the solution
we would want its semigroup Sn

∆t to share this property. But not all numerical methods do. We
see in figure 1 that different numerical methods have quite different results when applied to this
problem. We see from figure 1(a) that the forward Euler method diverges to infinity as t → ∞, and
figure 1(b) shows that the backward Euler method converges in on the origin. Thus, both forward
and backward Euler do a very poor job of discretizing the simple harmonic oscillator. One might
think that these results are of little practical interest, since we are just considering simple fixed
time-step methods. From figure 2, however, we see that running the simulation for longer times,
t ∈ [0, 5000], both the implicit midpoint rule and the classic Runge-Kutta method do quite well,
but one of Matlab’s best adaptive time-step ordinary differential equation solvers, ode45, actually
slowly converges to the origin. This shows the practical importance of stability considerations, even
on simple problems. The simple harmonic oscillator is a conservative system, which raises special
stability issues. In this section, however, we are only interested in dissipative systems.

Another thing that can go wrong with discretization is the introduction of spurious invariant sets
by the discretization, including spurious equilibria and periodic solutions. There are a great many
results that can be proved about this phenomenon, but consideration of spurious invariant sets is
beyond the scope of this paper.

We now turn to consider some of the theoretical results that are available for vector fields with
certain particular structural properties, viz., linear decay systems and dissipative systems.

8

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

(a) euler

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) beuler

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) theta1, θ = 0.5

Figure 1: Computation of the simple harmonic oscillator, with u(0) = (1, 0), using different numerical methods. For
each method, t ∈ [0, 100] and ∆t = 0.1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) theta1, θ = 0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) rk4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) ode45

Figure 2: Computation of the simple harmonic oscillator, with u(0) = (1, 0), using different numerical methods. For
each of the simulations t ∈ [0, 5000] and for the first two methods ∆t = 0.1.

5.1 Linear Decay Systems

The importance of the eigenvalues of the Jacobian Df of the vector field f in stability analysis
makes linear test problems useful to consider. And since we here are interested in the replication
of ω-limit sets by numerical methods, the problem of linear decay

u̇ = λu, λ ∈ C, Re(λ) ≤ 0, (5.1)

is a useful place to start. Since the solution to this problem is u(t) = Ueλt, it is easily seen that for
for two solutions u(t) and v(t)

‖u(t)− v(t)‖ ≤ ‖U − V ‖

for all t ≥ 0, since ‖u(t)− v(t)‖ = Re(λ)‖U − V ‖. In case that the inequality in (5.1) is strict, it is
therefore seen that this system has the property that ω(U) = 0 for any initial value U ∈ C. Thus,
we are interested in the conditions under which numerical methods replicate this behaviour.

Applied to this problem, Runge-Kutta methods can be written in the form

Un+1 = R(λ∆t)Un, R(z) = 1 + zbT (1− zA)−1
1s, (5.2)

where b is the vector of weights in equation (4.2) and A is the matrix of multipliers appearing in
(4.1) (b and A are determined by the Butcher tableau of the method as explained above), s is the
order of the method and 1s = (1, 1, . . . , 1)T ∈ Rs. This result follows easily from the linearity of
the vector field f in (5.1). It follows from this that ‖Un‖ = |R(λ∆t)|n‖U0‖, so for the method to be
stable on this problem we require that |R(λ∆t)| ≤ 1. The region S of the complex plane satisfying

9

this condition is called the region of absolute stability of the method. The desire for a Runge-Kutta
method that is stable when (5.1) is motivates the following

Definition 5.1 (A-Stability) A Runge-Kutta method is A-stable iff the region of absolute stability S
satisfies the condition

{z ∈ C |Re(z) ≤ 0} ⊆ S.

From the characterization of the region of absolute stability above we have the following

Proposition 5.2 A Runge-Kutta method is A-stable iff R(z) satisfies the condition |R(z)| ≤ 1 for all
z such that Re(z) ≤ 0.

For an explicit Runge-Kutta method applied to (5.1) the Yi in (4.1) can be computed directly
in order of increasing i, starting with Y1 = Un. Then Y2 = (1+ a21λ∆t)Un and it is easy to see that
in general Yi = p(λ∆t)Un, where p(z) is a polynomial of degree less than or equal to i − 1, since
the formula (4.1) and the linearity of f ensure that each subsequent Yi gets multiplied by a factor
of λ∆t. It therefore follows from (4.2) that Un+1 = q(λ∆t)Un, where q(z) is a polynomial of degree
less than or equal to s. Now, for any consistent method

∑

bi = 1, so the formula (4.2) together
with the linearity of f ensures that each Yi gets multiplied by a factor of λ∆t, so q(z) is at least a
linear function of z. Now, we observe that R(z) = q(z), so this shows that |R(z)| → ∞ as z → ∞.
Therefore, no explicit Runge-Kutta methods are A-stable.

Now, consider the one-stage theta method. Applied to the problem (5.1) it follows from (3.4)
that

Un+1 = Un +∆tλ ((1− θ)Un + θUn+1) , (5.3)

so that Un+1(1− λ∆tθ) = (1 + λ∆t(1− θ))Un and thus

R(z) =
1 + (1− θ)z

1− θz
.

If θ = 0, then R(z) = 1 + z and so the method is not A-stable, which we already knew since this
corresponds to forward Euler, which is explicit. Suppose that θ 6= 0. Then, letting z = reiφ, it
follows that R(z) = (eiφ + (1− θ)r)/(eiφ − θr). Thus,

|R(z)| =
(1− θ)2

θ2
=

1− 2θ + θ2

θ2
= θ−2 − 2θ−1 + 1.

Thus, for |R(z)| ≤ 1 we must have θ−2 − 2θ−1 < 0, which means that −2θ ≤ −1, or θ ≥ 1

2
. Thus,

the one-stage theta method is A-stable provided that θ ∈
[

1

2
, 1
]

. Considering the two-stage theta
method, the linearity of the f in this case causes (3.5) to give rise to the same equation as (5.3).
Therefore, the two-stage theta method is also A-stable provided that θ ∈

[

1

2
, 1
]

.

We need the following

Lemma 5.3 Let S be the region of absolute stability of a consistent Runge-Kutta method. If
z ∈ int(S) then |R(z)| < 1.

10

Proof. (Adapted from Stuart & Humphries (1996)) Consider the expression for R(z) in (5.2). We
have that (I − zA)−1 = adj(I − zA)/det(I − zA). Since det(I − zA) is a polynomial in z and each
entry in adj(I−zA) is a polynomial in z, the entries of (I−zA)−1 are rational functions of z. Thus,
from (5.2), R(z) is a rational function of z. Now, since by definition |R(z)| ≤ 1 on S, R cannot
have a pole in S, so R is analytic on S. Thus, it follows from the maximum modulus principle that
either R(z) is constant or |R(z)| < 1 in int(S). If R was constant and equal to 1 then it would
follow from the expression for R in equation (5.2) that b = 0, but this contradicts the consistency
of the method and so if z ∈ int(S), |R(z)| < 1.

Now, the following result establishes that A-stable methods succeed in replicating the asymptotic
behaviour of the system (5.1).

Theorem 5.4 (Decay Preserving Runge-Kutta Methods) Any two solution sequences {Un}∞n=0, {Vn}∞n=0

of an A-stable Runge-Kutta method applied to the problem (5.1) satisfy

‖Un+1 − Vn+1‖ ≤ ‖Un − Vn‖ (5.4)

for all n ≥ 0, and if the inequality in (5.1) is strict then for all ∆t > 0 and all U ∈ C then
ω∆t(U) = 0.

Proof. We know that ‖Un+1 − Vn+1‖ = ‖R(λ∆t)(Un − Vn)‖ = |R(λ∆t)|‖Un − Vn‖. The condition
that Re(λ) ≤ 0 in (5.1) implies that Re(λ∆t) ≤ 0 for all ∆t > 0. Since the region of stability
of A-stable methods includes the closure of the left half-plane, it follows from proposition 5.2 that
R(λ∆t) ≤ 1. The first part follows.
Now, we have that ‖Un+1‖ = |R(z)|‖Un‖ for the problem (5.1). Thus, for U0 = U ∈ C,

‖Un‖ = |R(z)|n‖U‖. (5.5)

If the inequality in (5.1) is strict, Re(λ∆t) < 0 for all ∆t > 0. Thus, since S contains the closure
of the left half-plane, λ∆t is in the interior of S. Thus, |R(z)| < 1 by lemma 5.3. Therefore, the
result follows from (5.5).

That A-stability is precisely the right condition to require in order for a Runge-Kutta method
to stably discretize (5.1) follows from the following

Theorem 5.5 (Blow-up for Non-A-Stable Methods) For any non-A-stable Runge-Kutta method there
exists a z ∈ C with Re(z) < 0 such that if λ∆t = z then the numerical solution of (5.1) satisfies

‖Un‖ → ∞ as n → ∞

for any initial condition U ∈ C.

Proof. (Adapted from Stuart & Humphries (1996)) For the problem (5.1), given U0 = U ∈ C,
‖Un‖ = |R(z)|n‖U‖. For a non-A-stable Runge-Kutta method it follows from proposition 5.2 that
there is a z ∈ C with Re(z) ≤ 0 such that |R(z)| > 1. In the proof of lemma 5.3 we showed that
R(z) is a rational function of z, so R(z) is continuous except at its poles. Thus, if z′ such that
|R(z′)| > 1 has Re(z′) = 0, there will exist a z in its neighbourhood with Re(z) < 0 such that
|R(z)| > 1. Therefore, if for such a z we let λ∆t = z, then |R(λ∆t)|n → ∞ as n → ∞. The result
follows.

11

Now, although we have shown that A-stability is the correct condition to require of a Runge-
Kutta method in order for the method to correctly replicate the asymptotic behaviour of the system
(5.1) for any time-step size ∆t, this does not necessarily entail that non-A-stable methods are entirely
without value. Indeed, they are not as the following result shows.

Theorem 5.6 (Conditional Decay of Runge-Kutta Methods) Let S be the region of stability of a
consistent Runge-Kutta method. If z = λ∆t ∈ S then any two solution sequences {Un}∞n=0, {Vn}∞n=0

of a Runge-Kutta method applied to the problem (5.1) satisfy (5.4), and if z ∈ int(S) then ω∆t(U) =
0 for all U ∈ C.

Proof. As we saw in the proof of theorem 5.4, ‖Un+1 − Vn+1‖ = |R(λ∆t)|‖Un − Vn‖, so since
|R(z)| ≤ 1 inside the region of stability of the method the first part follows.
Lemma 5.3 ensures that for any z ∈ int(S), |R(z)| < 1 for any consistent Runge-Kutta method.
Since (5.5) applies for any Runge-Kutta method applied to the problem (5.1), provided that λ∆t ∈
int(S), the second part follows.

Thus, even non-A-stable methods can stably discretize the linear decay problem provided we
can choose ∆t such that λ∆t ∈ int(S). Depending on how large |λ| is this may not be a severe
restriction, but for large |λ| we would require an A-stable method.

This concludes our detailed consideration of the linear decay problem. This case was treated in de-
tail because it is the simplest to analyze and it provides a conceptual basis for the treatment of more
complex structural conditions on the vector field f . The treatment to follow will be less theoretical
and more focused on the results available and on simulations to explore their consequences.

5.2 Dissipative Systems

A property satisfied by the vector field f of many discrete and continuous dynamical systems is
that all bounded sets of initial data end up in some bounded set in phase space for sufficiently large
t. Such a bounded set is called an absorbing set and a system that possesses an absorbing set is
called dissipative. Part of the interest in this property is that the dynamics inside the absorbing set
is not specified and so could include complicated invariant set, including chaotic attractors. At this
point we are only concerned with the preservation of the absorbing set under discretization. We will
consider what can be shown about the preservation of the attracting sets within it in the next section.

Humphries & Stuart (1994) proved a number of results for Runge-Kutta methods applied to dis-
sipative problems (2.1) that satisfy the additional constraint that f is locally Lipschitz and that
there are α, β ≥ 0 such that

〈f(u), u〉 ≤ α− β‖u‖2 (5.6)

for all u ∈ Rp. They prove there that such a system is dissipative, with the open ball B =
B(0,

√

α/β + ε) for any ε > 0 as an absorbing set, and that the system has a global attractor A
given by A = ω(B). We will now consider some of these results.

Given the importance of A-stable methods for the linear decay problem, the following result from

12

Stuart & Humphries (1996, 400) is of interest. For Runge-Kutta methods applied to any problem
of the form (2.1),(5.6), they show that in order for the numerical solution to be dissipative for all
∆t > 0, the method must be A-stable. It should be noted that dissipativity is understood in a gen-
eralized sense here to include the action of a generalized semigroup T n of a generalized dynamical
system.

Stating one of the main results from Humphries & Stuart (1994) requires a few additional defi-
nitions. For any Runge-Kutta method (4.1),(4.2) we can define two matrices,

B = diag(b1, b2, . . . , bs), (5.7)

and
M = BA+ ATB − bbT . (5.8)

With these in hand we have the following

Definition 5.7 A Runge-Kutta method is called algebraically stable if B andM are both positive-semi
definite.

An additional notion we need is that of a DJ-irreducible Runge-Kutta method, where ‘DJ’ is for
‘Dahlquist-Jeltsch’ who introduced the definition. It is defined negatively.

Definition 5.8 A Runge-Kutta method is called DJ-reducible if for some non-empty index set T ⊂
{1, . . . , s},

bj = 0, j ∈ T, aij = 0, i /∈ T, j ∈ T,

and is called DJ-irreducible otherwise.

We now have the following

Theorem 5.9 (Dissipative Algebraically Stable Runge-Kutta Methods, (Humphries & Stuart, 1994))
Suppose that (2.1),(5.6) is discretized using a DJ-irreducible, algebraically stable Runge-Kutta
method. Then for any fixed step size ∆t > 0 the map generated by the numerical method
is dissipative (in the generalized sense) and the open ball B(0, R) is an absorbing set for any
R >

√

α/β + ǫ+∆tC(0,∆t).3

The condition that the method be DJ-irreducible is not restrictive since, as they point out, in
practice methods are usually DJ-irreducible. Moreover they prove in (Stuart & Humphries, 1996,
265) that every DJ-reducible method is reducible to a DJ-irreducible one. Thus, this result shows
that the condition of algebraic stability is sufficient for the discretization by a Runge-Kutta method
to preserve the dissipativity of the system (2.1),(5.6). The Runge-Kutta methods considered in this
paper are all DJ-irreducible since bj 6= 0 for all j = 1, . . . , s, except for the two-stage theta method
with θ equal to 0 or 1, but these cases are equivalent to the forward and backward Euler methods,
which are DJ-irreducible.

3The expression for C(ε,∆t) is quite complicated and it is not necessary to reproduce it here, but is provided in
(Humphries & Stuart, 1994, 1466).

13

Consider the one-stage theta method. From the definition in section 3 A = θ and b = 1. B = 1,
so it is positive definite. and since M = θ + θ − 1 = 2θ − 1, for M to be positive semi-definite we
require that θ ∈

[

1

2
, 1
]

. Now consider the two-stage theta method. From the definition in section 3
and using (5.7), we have

A =

(

0 0
1− θ θ

)

, b = (1− θ, θ)T , B =

(

1− θ 0
0 θ

)

.

For θ ∈ [0, 1], B is positive semi-definite, so we consider M . From (5.8) we have that

M =

(

1− θ 0
0 θ

)(

0 0
1− θ θ

)

+

(

0 1− θ
0 θ

)(

1− θ 0
0 θ

)

−

(

(1− θ)2 θ(1− θ)
θ(1− θ) θ2

)

=

(

0 0
θ(1− θ) θ2

)

+

(

0 θ(1− θ)
0 θ2

)

−

(

(1− θ)2 θ(1− θ)
θ(1− θ) θ2

)

=

(

−(1 − θ)2 0
0 θ2

)

. (5.9)

For M to be positive semi-definite the diagonal terms must be non-zero, so this entails that θ = 1.
Therefore, the two-stage theta method is only algebraically stable if θ = 1.

These results show that the backward Euler method and the implicit midpoint rule (1-stage theta,
θ = 1

2
) are algebraically stable, but that the forward Euler method and the trapezoidal rule (2-stage

theta, θ = 1

2
) are not. Of the methods considered in this paper this only leaves RK4. Since we

know that RK4 is not A-stable, we expect that it is not algebraically stable, but it is not difficult
to show that it is not using (5.8). From the definition is section 3 and from (5.7) and (5.8) we have
that

A =

0 0 0 0

1

2
0 0 0

0 1

2
0 0

0 0 1 0

, B =

1

6
0 0 0

0 1

3
0 0

0 0 1

3
0

0 0 0 1

6

bbT =

1

36

1

18

1

18

1

36

1

18

1

9

1

9

1

18

1

18

1

9

1

9

1

18

1

36

1

18

1

18

1

36

.

A bit of algebra then shows that

M =

− 1

36

1

9
− 1

18
− 1

36

1

9
−1

9

1

18
− 1

18

− 1

18

1

18
−1

9
−1

9

− 1

36
− 1

18

1

9
− 1

36

,

which is not positive semi-definite since it has negative diagonal entries. Therefore, RK4 is not
algebraically stable.

Although we are primarily concerned with stability properties in this section, Humphries & Stuart
(1994) also prove an important convergence result for dissipative systems. As well as showing that
DJ-irreducible, algebraically stable Runge-Kutta method preserves dissipativity, they also prove the
following

14

Theorem 5.10 (Convergence of Dissipative Algebraically Stable RK Methods(Humphries & Stuart, 1994))
Suppose that (2.1),(5.6) is approximated numerically using a DJ-irreducible, algebraically stable
Runge-Kutta method. Then there exists ∆tc > 0 such that for ∆t < ∆tc the numerical solution
possesses a global attractor A∆t that satisfies

4

dist(A∆t,A) → 0 as ∆t → 0,

where A is the global attractor of (2.1),(5.6).

Thus, not only does the condition of algebraic stability ensure the preservation of the dissi-
pativity of the dynamical system, it also preserves the ω-limit sets in the limited sense detailed
by the theorem. It is limited for the following reason. This convergence condition is called upper

semicontinuity, and it means that every point on the numerical attractor is close to a point on the
true attractor. However, this does not in general entail the converse, i.e. the condition of lower
semicontinuity :

dist(A,A∆t) → 0 as ∆t → 0.

We require both upper and lower semi-continuity for true preservation of the dynamical attractor
A. Nevertheless, theorem 5.10 shows that algebraically stable Runge-Kutta methods do a very
good job at approximating the attractor of a dissipative system.

To explore the results of theorems 5.9 and 5.10 let us consider the following test problem in R2:

ṙ = r − ar3, θ̇ = 1, a > 0. (5.10)

For steady-state solutions ṙ = 0, which implies that r(1 − ar2) = 0, i.e. r = 0 or ar2 − 1 = 0.
Thus, the system has an equilibrium point at r = 0 and a limit cycle solution r = a−1/2. Since
fr(r) = 1−ar2, the equilibrium point at the origin is unstable. The stability of the limit cycle cannot
be determined by a linear analysis but nonlinear stability analysis determines the stability by the
sign of the coefficient −a of r3, which is negative, so the limit cycle is stable. Since the limit cycle
is stable we have that for all initial points U = (r, θ)T away from the origin, ω(U) = {r | r = a−1/2}.
So given any bounded set E of initial data and any ε > 0, there is a t∗ > 0 such that for all t > t∗,
S(t)E is inside the set Bε = {(r, θ) | r < a−1/2 + ǫ}. Thus, for any ε > 0, Bε is an absorbing set,
and the system is dissipative. To prove that the system is dissipative in the sense required for
theorem 5.9 we must show that the condition (5.6) holds. f(u) = (r− ar3, 1)T , with u = (r, θ)T , so
〈f(u), u)〉 = r2 − ar4 + θ and ‖u‖2 = r2 + θ2. Thus, we require that there are α, β ≥ 0 such that

r2 − ar4 + θ ≤ α− β(r2 + θ2).

Rearranging we obtain the equivalent condition

(1 + β)r2 − ar4 + θ(1 + βθ) ≤ α.

4The notion of set-distance used in this theorem is the asymmetric Hausdorff semi-distance, viz. for two sets A,B,

dist(A,B) = sup
a∈A

dist(a,A).

15

The left hand side splits into a function of r and a function of θ. The function of r is a quartic open-
ing downwards and so is bounded above. The function of θ is a parabola opening upwards for β 6= 0,
but since the system is confined to R2, there is an implicit periodic boundary condition on θ and θ
only takes values in some finite set, e.g. [0, 2π]. Therefore the left hand side is bounded for any β
so it is always possible to find an α to satisfy (5.6). Therefore, theorem 5.9 can apply to this system.

We now consider simulations of (5.10) in Matlab. Consider the case where a = 100, so that
the stable limit cycle has radius r = 0.1. The symmetry of the system (5.10) under θ-translations
shows that the solutions are independent of θ so we need not worry about dynamical behaviour
peculiar to our initial choice of θ. Thus, we only need to consider varying the initial value of r, and
we may leave θ = 0. Let us take r = 1. If we work with a very small time-step ∆t = 0.001, all of the
methods do quite well, both in the sense of getting the phase trajectory approximately right as well
as the asymptotic behaviour.5 Increasing to ∆t = 0.01 the trajectory of the forward Euler method
no longer matches the true trajectory, which is closely approximated by ode45 (see figure 3(a) and
compare to 3(f)). Increasing to ∆t = 0.1, RK4, the trapezoidal rule (2-stage theta, θ = 0.5) and the
implicit midpoint rule (1-stage theta, θ = 0.5) all fail to match the correct trajectory and both RK4
and forward Euler blow-up (see figure 4). It is seen from figure 4 that the implicit midpoint rule
and the trapezoidal rule are beginning to show signs of near-term instability, in that they no longer
closely approximate the correct trajectory. Nevertheless, we notice that the get the asymptotic
behaviour right. Backward Euler, however, still approximates the true trajectory closely (see figure
4(b)). We see at this stage that all of the algebraically stable methods still get the asymptotic
behaviour correct, as we expect, even if the global error is large. The only non-algebraically stable
method still functioning at this point, the trapezoidal rule, also gets the asymptotic behaviour cor-
rect. Leaving aside forward Euler and RK4 since they are unstable, and increasing to ∆t = 1, none
of the fixed time-step methods approximates the phase trajectory accurately, although backward
Euler still does quite well (see figure 5(a) and compare to 5(d)), and the trapezoidal rule has be-
come quite unstable in terms of its phase trajectory (see figure 5(c)). But the algebraically stable
methods and the trapezoidal rule still get the asymptotic behaviour correct (see figure 5). Of course
this does not show that the trapezoidal rule gets the asymptotics correct for arbitrary inital data
and ∆t, but it seems likely that the increased stability of the trapezoidal rule over RK4 and forward
Euler has to do with the implicitness of the method.

To explore the limits of the stability of the trapezoidal rule let us consider larger initial values
of r. Increasing to r(0) = 10 and running the simulation for longer times, we see from figure 6(a)
that by t = 3000 the phase trajectory still has not converged on the limit cycle set, but we see
from figure 6(b) that it has by t = 6000. This is more clearly seen from figure 6(c), where it can
be seen that the method takes valules approximately on the circle r = 0.1.6 Thus, even for ∆t as
large as 10, the trapezoidal rule still reaches the limit cycle. Unfortunately the long computation
time makes exploring much further quite difficult, but it can be seen by running the simulation
for larger radii for long times that the radius of the orbit decreases very slowly, but steadily. This
is of course not conclusive, but it is suggestive that a weaker condition than algebraic stability is

5Since all of the trajectories are visibly similar plots of phase trajectories have not been included.
6This is also a very good illustration of the difference between upper and lower semi-continuity, since if it were

the case that the method replicated this ‘star’ pattern for all time then clearly each point of A∆t would be close to
A, the limit cycle, but there would be many points on A quite far from any point of A∆t.

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) euler

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) beuler

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) theta1, θ = 0.5

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(d) theta2, θ = 0.5

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(e) rk4

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(f) ode45

Figure 3: Computation of the limit cycle test problem (5.10), with u(0) = (1, 0), using different numerical methods.
For each method, t ∈ [0, 100] and ∆t = 0.01 (except ode45 is evaluated at 0.01 intervals).

0 0.5 1 1.5 2 2.5 3 3.5

x 10
38

−5

0

5

10

15

20

x 10
37

(a) euler

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b) beuler

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) theta1, θ = 0.5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(d) theta2, θ = 0.5

0 1 2 3 4

x 10
25

−1

−0.5

0

0.5

1

1.5

x 10
25

(e) rk4

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(f) ode45

Figure 4: Computation of the limit cycle test problem (5.10), with u(0) = (1, 0), using different numerical methods.
For each method, t ∈ [0, 100] and ∆t = 0.1 (except ode45 is evaluated at 0.1 intervals and for euler t ∈ [0, 0.4]).

17

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) beuler

−0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(b) theta1, θ = 0.5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) theta2, θ = 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(d) ode45

Figure 5: Computation of the limit cycle test problem (5.10), with u(0) = (1, 0), using different numerical methods.
For each method, t ∈ [0, 100] and ∆t = 1 (except ode45 is evaluated at 0.1 intervals).

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) t ∈ (0, 3000)

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) t ∈ (0, 6000)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(c) zoom in of 6(b)

Figure 6: Computation of the limit cycle test problem (5.10), with u(0) = (1, 0), using the trapezoidal rule (theta2,
θ = 0.5) with ∆t = 10.

sufficient to preserve dissipativity, perhaps with some restriction on the time-step. This is question
appears only to be of theoretical interest, however, since the algebraically stable methods clearly
perform better than the trapezoidal rule.

6 Discretization of Arbitrary Attractors

We now turn to a very brief consideration of the issue of the discretization of arbitrary attractors.
Attractors play an important role in determining the overall dynamics of a dynamical system (2.1),
so gaining insight into their structure is important. But for nonlinear vector fields f , even if they are
only moderately complex, obtaining analytical results about the attractors is an extremely difficult
matter. Thus, numerical methods are a key part of the study of dynamical systems. It is therefore
an extremely important question what effect the discretization has on the attracting sets of the
dynamical system.

A basic result concerning this question was proved by Kloeden & Lorenz (1986) which says that, un-
der a fairly strong global Lipschitz condition on f , if the dynamical system (2.1) possesses a compact,
uniformly asymptotically stable set Λ then there is a ∆tc > 0 such that for ∆t ∈ (0,∆tc) a one-step
numerical method has a compact, uniformly asymptotically stable absorbing set Λ(∆t) ⊇ Λ that
converges to Λ as ∆t → 0. Thus, this establishes that for an attractor A = ω(Λ) of the dynamical
system, the numerical method has attractors A∆t = ω(Λ(∆t)) that converge to A as ∆t → 0, where
the convergence is upper semi-continuous. Although this is a nice result, it requires a quite strong
smoothness assumption on the vector field f and it falls short of the ideal of Hausdorff convergence,

18

i.e. convergence that is both upper and lower semi-continuous.

Much time has passed since this paper was written, and there are a number of ways in which
better results can be obtained. Grüne (2003) describes the three main approaches that have been
taken to this problem. One approach is to impose certain conditions on a general numerical method
such that Hausdorff convergence can be proved. Stuart & Humphries (1996, 555) prove such a re-
sult for attractors that satisfy a particular structural condition that includes gradient systems with
a finite number of equilibria. They also prove more generally that, under suitable conditions on the
numerical method, if an attracting set A∆t is invariant for all ∆t and is Hausdorff convergent to a
compact set A0 than that set is an invariant set of the dynamical system. A second approach is
to devise specific algorithms for which it is possible to prove convergence to the correct sets under
mild or no restrictions on the discretized system. Such results include the ability to compute an
approximation of a global attractor of an evolution semigroup. Dellnitz & Hohmann (1997) have
developed such a method. The third approach is to formulate “conditions on the behavior of the
numerical systems under which [one] can ensure convergence of the respective sets or the existence
of respective nearby sets for the approximated system.” (Grüne, 2003, 2097) This is the approach
Grüne follows in the cited paper, where it is proved, e.g., that a sequence of numerical attractors
converges to a real attractor if and only if the numerical attractors are attracting with uniformly
bounded attraction rates.

Thus, there are number of promising approaches to the problem of the discretization of the at-
tractors of a dynamical system. It is unclear how general a characterization of the numerical
methods that preserve invariant sets it will be possible to obtain. And aside from the question of
discretization error for finite dimensional systems (2.1), there is the more difficult question of the
preservation of invariant sets for infinite dimensional systems, including numerical methods for the
computation of delay differential equations and partial differential equations. Nevertheless, it is
clear distinct progress is being made in this interesting and important field.

7 Conclusion

The main, but very limited, conclusion that can be drawn from this project is that numerical
simulations provide a useful complement to an understanding of results in numerical analysis. On
the one hand it is useful to illustrate the results of theorems by seeing how they apply to particular
numerical methods and with large variations of the time-step. And on the other hand it is interesting
to explore beyond what is established by theorems by running simulations under conditions or with
methods to which the theorems do not apply. The question raised concerning the limitation of the
result concerning algebraically stable Runge-Kutta methods applied to dissipative systems, not of
any significance in itself, points to the potential use of numerical simulation in the search for new
theorems that can be proved. This is becomes of increasing interest as the computational power
available on personal computers continues to grow in approximate accordance with Moore’s law.

19

A Numerical Methods (in alphabetical order)

A.1 beuler

function [tout,yout] = beuler(F, DF, tspan, y0, h, tol, Nmax)

%BEULER - Fixed time step backward Euler method for solving single or

% systems of first-order ODE; Newton’s method is used to solve the

% implicit equation which arises at each time step

%

% BEULER(F,DF,TSPAN,Y0,H,TOL,NMAX) with TSPAN = [T0 TFINAL] integrates

% the system of differential equations dy/dt = f(t,y) from t = T0 to

% t = TFINAL. The initial condition is y(T0) = Y0.

%

% The first argument, F, is a function handle or an anonymous function

% that defines f(t,y). This function must have two input arguments,

% t and y, and must return a column vector of the derivatives, dy/dt.

%

% The second argument, DF, is a function handle or an anonymous function

% that defines the Jacobian Df(t,y) of f(t,y). This function must have

% two input arguments, t and y, and must return a matrix with the

% derivatives, (df_i/dy_j)(t), as elements.

%

% The fifth argument, H, is the fixed time step of the method

%

% The sixth argument, TOL, is convergence tolerance applied to Newton’s

% method at each time step

%

% The last argument, NMAX, is the maximum number of iterations of

% Newton’s method to be performed at each time step

%

% With two output arguments, [T,Y] = BEULER(...) returns a column

% vector T and an array Y where Y(:,k) is the solution at T(k).

%

% With no output arguments, BEULER plots the emerging solution.

%

% Dependencies:

%

% when applied to a system of equations, this routine makes use of

% MATLAB’s backslash operator to solve a linear system

plotfun = @odeplot;

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

20

h=tdir*abs(h);

plotit = (nargout == 0)

t = t0;

y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

tout = t;

yout = y.’;

end

% number of equations determines the method used

neqn = length(y0)

if (neqn == 1)

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Compute a step

x = y;

for j = 1:Nmax

top = (x - y) - h * F(t+h, x);

bot = 1 - h * DF(t+h, x);

dx = top / bot;

x = x - dx;

if (abs(dx) < tol)

break

end

end

% Take a step.

y = x;

t = t + h;

21

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

else

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Compute a step

x = y;

%w0 = y0;

for j = 1:Nmax

Fx = (x - y) - h * F(t+h, x);

DFx = eye(neqn) - h * DF(t+h, x);

dx = -DFx\Fx;

x = x + dx;

if (max(abs(dx)) < tol)

break

end

end

% Take a step

y = x;

t = t + h;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

22

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

end

if plotit

plotfun([],[],’done’);

end

A.2 euler

function [tout,yout] = euler(F, tspan, y0, h);

% EULER - Fixed step euler method for solving systems of ODE

%

% EULER(F,TSPAN,Y0,H) with TSPAN = [T0 TFINAL] integrates the system

% of differential equations dy/dt = f(t,y) from t = T0 to t = TFINAL.

% The initial condition is y(T0) = Y0.

%

% The first argument, F, is a function handle or an anonymous function

% that defines f(t,y). This function must have two input arguments,

% t and y, and must return a column vector of the derivatives, dy/dt.

%

% The last argument, H, is the fixed time step of the method

%

% With two output arguments, [T,Y] = EULER(...) returns a column

% vector T and an array Y where Y(:,k) is the solution at T(k).

%

% With no output arguments, EULER plots the emerging solution.

plotfun = @odeplot;

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

h=tdir*abs(h);

plotit = (nargout == 0)

t = t0;

y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

23

tout = t;

yout = y.’;

end

% The main loop.

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tdir*(tfinal - t);

end

% Take a step.

y = y + h*F(t, y);

t = t + h;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

if plotit

plotfun([],[],’done’);

end

A.3 rk4

function [tout,yout] = rk4(F, tspan, y0,h)

%RK4 Solve non-stiff differential equations.

%

% RK3(F,TSPAN,Y0,H) with TSPAN = [T0 TFINAL] integrates the system

% of differential equations dy/dt = f(t,y) from t = T0 to t = TFINAL.

% The initial condition is y(T0) = Y0.

%

24

% The first argument, F, is a function handle or an anonymous function

% that defines f(t,y). This function must have two input arguments,

% t and y, and must return a column vector of the derivatives, dy/dt.

%

% The last argument, H, is the fixed time step of the method

%

% With two output arguments, [T,Y] = RK4(...) returns a column

% vector T and an array Y where Y(:,k) is the solution at T(k).

%

% With no output arguments, RK4 plots the emerging solution.

% Initialize variables.

plotfun = @odeplot;

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

plotit = (nargout == 0);

t = t0;

y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

tout = t;

yout = y.’;

end

% The main loop.

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Take a step.

s1 = F(t, y);

s2 = F(t+h/2, y+h/2*s1);

s3 = F(t+h/2, y+h/2*s2);

25

s4 = F(t+h, y+h*s3);

t = t + h;

y = y + h*(s1 + 2*s2 + 2*s3 + s4)/6;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

if plotit

plotfun([],[],’done’);

end

A.4 theta1

function [tout,yout] = theta1(F, DF, tspan, y0, h, theta, tol, Nmax)

%THETA2 - Fixed time one stage theta method for solving single or

% systems of first-order ODE; Newton’s method is used to solve the

% implicit equation which arises at each time step - For theta = 0 the

% method is equivalent to forward Euler and for theta = 1 the method is

% equivalent to backward Euler

%

% THETA2(F,DF,TSPAN,Y0,H,TOL,NMAX) with TSPAN = [T0 TFINAL] integrates

% the system of differential equations dy/dt = f(t,y) from t = T0 to

% t = TFINAL. The initial condition is y(T0) = Y0.

%

% The first argument, F, is a function handle or an anonymous function

% that defines f(t,y). This function must have two input arguments,

% t and y, and must return a column vector of the derivatives, dy/dt.

%

% The second argument, DF, is a function handle or an anonymous function

% that defines the Jacobian Df(t,y) of f(t,y). This function must have

% two input arguments, t and y, and must return a matrix with the

% derivatives, (df_i/dy_j)(t), as elements.

%

% The fifth argument, H, is the fixed time step of the method

26

%

% The sixth argument, TOL, is convergence tolerance applied to Newton’s

% method at each time step

%

% The last argument, NMAX, is the maximum number of iterations of

% Newton’s method to be performed at each time step

%

% With two output arguments, [T,Y] = THETA1(...) returns a column

% vector T and an array Y where Y(:,k) is the solution at T(k).

%

% With no output arguments, THETA1 plots the emerging solution.

%

% Dependencies:

%

% when applied to a system of equations, this routine makes use of

% MATLAB’s backslash operator to solve a linear system

plotfun = @odeplot;

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

h=tdir*abs(h);

plotit = (nargout == 0)

t = t0;

y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

tout = t;

yout = y.’;

end

% number of equations determines the method used

neqn = length(y0)

if (neqn == 1)

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

27

h = tfinal - t;

end

% Compute a step

x = y;

for j = 1:Nmax

top = (x - y) - h * F(t+h, (1 - theta)*y + theta*x);

bot = 1 - h * theta * DF(t+h, (1 - theta)*y + theta*x);

dx = top / bot;

x = x - dx;

if (abs(dx) < tol)

break

end

end

% Take a step.

y = x;

t = t + h;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

else

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Compute a step

x = y;

%w0 = y0;

28

for j = 1:Nmax

Fx = (x - y) - h * F(t+h, (1 - theta)*y + theta*x);

DFx = eye(neqn)-h*theta*DF(t+h, (1 - theta)*y + theta*x);

dx = -DFx\Fx;

x = x + dx;

if (max(abs(dx)) < tol)

break

end

end

% Take a step

y = x;

t = t + h;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

end

if plotit

plotfun([],[],’done’);

end

A.5 theta2

function [tout,yout] = theta2(F, DF, tspan, y0, h, theta, tol, Nmax)

%THETA2 - Fixed time two stage theta method for solving single or

% systems of first-order ODE; Newton’s method is used to solve the

% implicit equation which arises at each time step - For theta = 0 the

% method is equivalent to forward Euler and for theta = 1 the method is

% equivalent to backward Euler

%

% THETA2(F,DF,TSPAN,Y0,H,TOL,NMAX) with TSPAN = [T0 TFINAL] integrates

% the system of differential equations dy/dt = f(t,y) from t = T0 to

% t = TFINAL. The initial condition is y(T0) = Y0.

29

%

% The first argument, F, is a function handle or an anonymous function

% that defines f(t,y). This function must have two input arguments,

% t and y, and must return a column vector of the derivatives, dy/dt.

%

% The second argument, DF, is a function handle or an anonymous function

% that defines the Jacobian Df(t,y) of f(t,y). This function must have

% two input arguments, t and y, and must return a matrix with the

% derivatives, (df_i/dy_j)(t), as elements.

%

% The fifth argument, H, is the fixed time step of the method

%

% The sixth argument, TOL, is convergence tolerance applied to Newton’s

% method at each time step

%

% The last argument, NMAX, is the maximum number of iterations of

% Newton’s method to be performed at each time step

%

% With two output arguments, [T,Y] = THETA2(...) returns a column

% vector T and an array Y where Y(:,k) is the solution at T(k).

%

% With no output arguments, THETA2 plots the emerging solution.

%

% Dependencies:

%

% when applied to a system of equations, this routine makes use of

% MATLAB’s backslash operator to solve a linear system

plotfun = @odeplot;

t0 = tspan(1);

tfinal = tspan(2);

tdir = sign(tfinal - t0);

h=tdir*abs(h);

plotit = (nargout == 0)

t = t0;

y = y0(:);

% Initialize output.

if plotit

plotfun(tspan,y,’init’);

else

tout = t;

yout = y.’;

end

30

% number of equations determines the method used

neqn = length(y0)

if (neqn == 1)

while t ~= tfinal

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Compute a step

x = y;

for j = 1:Nmax

top = (x - y) - h * ((1 - theta)*F(t, y) + theta*F(t+h, x));

bot = 1 - h * theta * DF(t+h, x);

dx = top / bot;

x = x - dx;

if (abs(dx) < tol)

break

end

end

% Take a step.

y = x;

t = t + h;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

else

while t ~= tfinal

31

% Stretch the step if t is close to tfinal.

if abs(h) >= abs(tfinal - t)

h = tfinal - t;

end

% Compute a step

x = y;

%w0 = y0;

for j = 1:Nmax

Fx = (x - y) - h * ((1 - theta)*F(t, y) + theta*F(t+h, x));

DFx = eye(neqn) - h * theta * DF(t+h, x);

dx = -DFx\Fx;

x = x + dx;

if (max(abs(dx)) < tol)

break

end

end

% Take a step

y = x;

t = t + h;

% Update output

if plotit

if plotfun(t,y,’’);

break

end

else

tout(end+1,1) = t;

yout(end+1,:) = y.’;

end

end

end

if plotit

plotfun([],[],’done’);

end

32

References

Dellnitz, Michael, & Hohmann, Andreas. (1997). A Subdivision Algorithm for the Compu-
tation of Unstable Manifolds and Global Attractors. Numerical Mathematics, 75, 293–317.

Grüne, Lars. (2003). Attraction Rates, Robustness, and Discretization of Attractors. SIAM

Journal on Numerical Analysis, 41(6), 2096–2113.

Humphries, A. R., & Stuart, A. M. (1994). Runge-Kutta Methods for Dissipative and Gradient
Dynamical Systems. SIAM Journal on Numerical Analysis, 31(5), 1452–1485.

Kloeden, P. E., & Lorenz, J. (1986). Stable Attracting Sets in Dynamical Systems and in
their One-Step Discretizations. SIAM Journal on Numerical Analysis, 23(5), 986–995.

Stuart, A. M., & Humphries, A. R. (1996). Dynamical Systems and Numerical Analysis.
Cambridge University Press.

33

	Introduction
	Dynamical Systems
	Numerical Methods
	Numerical Methods as Dynamical Systems
	Global Stability Properties
	Linear Decay Systems
	Dissipative Systems

	Discretization of Arbitrary Attractors
	Conclusion
	Numerical Methods (in alphabetical order)
	beuler
	euler
	rk4
	theta1
	theta2

